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Abstract: This work deals with the use of our recent generalized dispersive material (GDM) model built 
on Pade approximants that is applied to FDTD simulations of nanoplasmonic structures. In particular, our 
original formulation is compared to the classical recursive-convolution technique for the Lorentz oscilla-
tor using a complex recursive accumulator. The proposed GDM model is then used to simulate the spec-
tral response of an array of 2D gold nanoslits, and the results are successfully validated with frequency-
domain solutions. Another simulation example shows the transmission, reflection, and absorption spectra 
obtained from 3D FDTD parallel calculations of a multi-layer semicontinuous metal film. The numerical-
ly simulated results are then compared to data obtained from the optical characterization of a semiconti-
nuous film sample with the same topology, and a comparison of both results demonstrates a good fit. 
Each example uses a modulated incident pulse with a fixed carrier frequency and a Gaussian envelope. 
 
 
Keywords: FDTD, Recursive Convolution (RC), Generalized Dispersive Material (GDM),  
Critical Points (CP). 
 
 

1. Introduction 
 

While frequency-domain simulations of nanophotonic structures composed of dispersive media may 
be adequate for most cases, certain physical phenomena can only be represented in the time domain. Si-
mulations containing nonlinear effects stronger than a mild perturbation (up to and including saturation), 
as well as photomodification and other irreversible phenomena, require a time-domain description. In fre-
quency-domain (FD) numerical methods, the data for dispersive material properties is taken as a discrete 
set of experimental entries; however, the implementation of the dispersion in time-domain methods re-
quires an approximation of FD dispersion data with an analytical function. The most popular approach, 
well covered in the FDTD literature, e.g. [1], is to take this analytical dependency as a combination of 
Debye, Drude, Sellmeier, and Lorentz terms, which provides a good fit with the FD data for metal and 
dielectric media [2]. A more recent and more effective FD approximation (better fit and less computation-
al cost) is obtained for a number of noble metals with the so called critical points (CP) analytical disper-
sion model [3,4]. However, the dispersive FDTD method is not fully investigated for that latter model. So 
far only a few papers have reported successful numerical simulations using an FDTD method in combina-



tion with auxiliary differential equation (ADE) or first-order recursive convolution (RC) techniques to 
implement a CP dispersion model [5,6]. This need has motivated work to implement higher-order RC me-
thods, and it has generally resulted in a necessity for a universal approach to the implementation of differ-
ent dispersion terms and different ADE and RC methods. The latter was accomplished in [7], where the 
dispersion is introduced with Pade approximants and the proposed, explicit scheme is resolved in a mini-
mized number of flops while, also, having the ability to easily switch between different ADE and RC me-
thods of first- and second-order accuracies. 

In Section 2, we recapitulate the approach proposed in [7]; although we show that for RC methods 
the initial formulation [7] can be simplified with the introduction of complex recursive accumulators, 
provided that the aim is to obtain the simplest formulas for the higher-order RC methods. The drawbacks 
of using complex recursive accumulators for specific dispersion models are discussed. The discussion is 
important since all the classical publications of the RC methods for Lorentz media [1], [8-12] utilize 
complex accumulators and can be improved by using real functions as has been done in [7]. In Section 3, 
we show the results of 2D and 3D simulations performed with the proposed dispersive FDTD. 
 

2. Dispersive FDTD 
 
In this section, we discuss the implementation of the dispersion of permittivity for time-domain me-

thods. We revise the techniques that give the most general approaches to incorporate a wide class of dis-
persion models while exploiting different ADE and RC numerical schemes. 

A. Dispersive FDTD Revised 
For simulations, we use the conventional FDTD method by Yee; however, the dispersion is intro-

duced using the generalized dispersive material (GDM) model based on Pade approximants [7]. In this 
approach, the dispersive permittivity function is assumed to be given in the frequency domain in the form 
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which includes the most important metal and dielectric dispersion models such as Drude-Lorentz, Debye, 
Sellmeier, and critical points. We will also need its transform to time domain, which is 
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And the time-domain partial polarizations corresponding to term 
iχ , and denoted as 

iP , satisfy the ODEs 
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where the components of the electric polarization vector P are normalized along with E and H fields by 
the incident field factors 0D , 0E , 0H , with 0 0 0D Eε= , 1

0 0 0 0H Eε µ−= . The polarizations can be writ-

ten through the convolution integral ( )1 2I I I= ∪  
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Numerically, local polarization can be calculated using a finite-difference approximation of the ODEs 
(3) (ADE method) or by using the numerical integration of a convolution integral (4) (RC methods). As it 
is shown in [7], both numerical methods result in recurrences of the form 
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For ADE methods, the coefficients , ,,k i k i
α β are found immediately after the finite-difference approxima-

tion of (3) and grouping terms. For RC methods, the derivation of the coefficients requires more algebraic 
effort. In [7], we give general formulas for coefficients , ,,k i k i

α β , which are parameterized through the first 

two approximation coefficients of the numerical integration sum and apply to the formulas for five RC 
methods: TRC[8], PCRC2 [9], PLRC [10], RRC [11], and PCRC [12]. However, this algebraic effort can 
be simplified even more by using a complex exponential susceptibility for 2i I∈  terms (compare to (2)) 
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ligatory trick in all basic publications of RC methods applied to the Lorentz dispersion model; however, it 
has some drawbacks. In the next subsections, the generalized approach [7] is formulated with complex 
susceptibility and the pros and cons of both real and complex RC realizations are discussed.  

B. Using Complex Exponential Susceptibility for RC Methods 
The starting point of this approach is the validity of the equationRe ( ) ( )
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the over-damped Lorentz terms are present in the sum (1), they must be expanded to irreducible terms, 
that is to a conductivity term and Debye terms 1i I∈ . Then, all partial susceptibilities ( )i tχ , 1i I∈  and 

( )i tχɶ , 2i I∈  have the exponential representation ( )te U tβα , and the original lemma from [7] gives a re-

cursive formula for all partial polarizations ( )i tP , 1i I∈  and ( )i tPɶ , 2i I∈ . 

Lemma. If an RC approximation method for the exponential susceptibility ( ) ( )tt e U tβχ α=  is given with 

the sum 
1

0

nn n j
jj
χ

− −
=

=∑P E  and the approximation coefficients satisfy the recurrence  1j j
eβτχ χ −= , 

2j ≥ , then the recursive rule for polarization can be written as  

 1 1
0 1 0

n n n ne eβτ βτχ χ χ+ +  = + + −  P P E E . (8) 

Table 1: RC Coefficients for exponential pole ( ) ( )tt e U tβχ α=  

  2nd Order RC Methods, 1, 2
k k
e kβτχ χ −= ≥  1st Order RC Methods, 1, 1k ke kβτχ χ −= ≥  

  TRC [8]  PCRC2 [9]  PLRC [10]  RRC [11]  PCRC [12] 

0χ   1
2
ατ

 
 ( )1 /2 1eβταβ− −

 
 

2 1( 1 )eβταβ τ βτ− − − −
 

ατ
 ( )1 1eβταβ− −

 

1χ   eβτατ

 

 ( )1 /21e eβτ βταβ− −
 

 ( )22 1 1 eβταβ τ− − −  - - 

 
In particular, this lemma gives a recursive integration formula for methods such as RRC, TRC, PLRC, 
PCRC, and PCRC2; the coefficients 0χ , 1χ  for all listed methods are given in Table 1. 

Finally, we incorporate the permittivity function (1) into Yee’s FDTD scheme through polarizations: 
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Formulas (8)-(9) are additionally rearranged to minimize the number of performed flops: 
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One can easily reproduce the formulas (10)-(11) utilizing 1 1
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Using (11), with coefficients 0χ , 1χ  from Table 1 and the exponential representation for susceptibili-

ties (2)-(7), the dispersion implementation of most RC methods becomes straightforward, including im-
plementation of the Debye, Drude, Lorentz and critical points models. 

C. Disadvantages of the Approach with Complex Exponential Susceptibility 
The obvious advantage of using the complex recursive accumulators is the relative ease of the numer-

ical formulas. However, for that advantage we pay with the following drawbacks: 
a) The update of each complex recursive accumulator is done in 10 flops; however, by converting the 

complex-valued formulas into real functions, the same procedure can be performed in 7 flops (see [7]); 
b) The complex recursive formula is not suitable for the analysis of numerical aspects of the method, 

such as stability and dispersion; in that case conversion to real functions is required; 
c) The over-damped Lorentz and Drude terms must be expanded to Debye and conductivity terms.  
 

3. Numerical simulations 
 
To verify our method, we investigated the optical properties of gold and silver nanostructures. The 

dispersive function of gold is more precisely defined as a sum of a Drude term and two critical points 
terms (D2CP). For silver, which is examined in the wavelength band above the interband transitions, we 
may use the Drude model. The detailed functions and parameters for these models are described in [13]. 

 
Fig. 1. 2-D simulation model with gold nano-slits. 

A. 2-D Simulation with Gold Nano-Slits 
First, we examine a 2-D simulation with periodic gold nano-slits under normal incidence of TE- or 

TM-polarized waves, as shown in Fig. 1. The gold slits are surrounded by air and extend to infinity in the 
x direction. All of the 150-nm slits are made in a 600-nm silver film with a 450-nm period; the slits are 
filled with a dielectric material (refractive index, 1.5n = ). The rectangular simulation domain is set to be 
10 µm in the z direction, with perfectly matched layer (PML) truncation at the two sides that are perpen-
dicular to this direction, and 450 nm in the y direction with periodic boundary conditions (PBC) applied 
to the remaining sides to mimic a periodic array of infinitely extended slits. The spatial step is 5 nm (the 
Courant condition number is 0.5). To obtain the broadband response, we take the incident E-field to be a 
Gaussian pulse (300-nm carrier, 237~408-nm FWHM, 3-fs offset). The field probes, which are located 
close to the source and the shade sides along the longitudinal (propagation) direction, are then post-
processed with FFT to obtain the numerical reflection and transmission spectra. The results are compared 
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to a semi-analytical tool based on the spatial harmonic analysis (SHA) method and freely available on-
line [14]. As shown in Fig. 2, the reflection and transmission spectra for both TE and TM polarizations 
are in excellent agreement; the absolute numerical errors are within the range of 0.01 across the whole 
wavelength range from 500 to 1600 nm. 
 

 
Fig. 2. Comparison of transmission-reflection spectra of 2-D gold slits, (a) TE polarization and 

(b) its absolute error, (c) TM polarization and (d) its absolute error. 

B. 3-D Simulations with Multi-Layer Composite Ag/SiO2 Film 
Our other important example deals with the spectral responses of a multi-layer, composite Ag/SiO2 

film on a glass substrate ( 1.52n = ). As illustrated in Fig. 3(a), the input model for the composite film is 
generated by converting the FE-SEM image of a fabricated film (Figure 3(b)) to a binary image, where an 
appropriate grayscale threshold is used to determine the locations occupied by silver and SiO2 ( 1.45n = ). 
It is impossible to model the entire area of the film; therefore, the complete film image is divided into in-
dividual frames (200×200 nm2 each). The spatial step is 2 nm (the Courant condition number is 0.5). The 
PML-truncated simulation domain is 4 µm long. PBCs are applied to all sides parallel to the z direction. 
 

 
 

Fig. 3. FDTD simulation of a multi-layer composite Ag/SiO2 film deposited on a thick glass substrate. 
 

The calculated spectra change widely from frame to frame due to differences in geometry; hence, to 
obtain statistically sound average spectra of the film, we calculated a representative number of individual 
spectra [15,16]. Fig. 3(c) depicts the averaged reflection (R), transmission (T) and absorption (A) spectra, 
which are in good agreement with the experimental data (assuming a stochastic topology of the film, and 
simplifications introduced by averaging the spectra of periodically arranged finite-sized frames). 

 
4. Conclusions  

 

We apply the generalized dispersive material model [7], based on the Pade approximants of the dis-
persive dielectric function for two-dimensional and three-dimensional simulations of nanoplasmonic 
structures. This method is used due to its ability to work uniformly with different dispersion terms such as 
Drude, Lorentz, Debye, critical points, and Sellmeier, and to easily switch between ADE and RC me-
thods, while having the same or better effective performance. 
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The approach used was compared to the classical RC treatment of conjugate poles with complex ac-
cumulators. We showed that although using complex functions simplifies the derivation of the scheme 
coefficients for RC methods, it has a number of drawbacks with respect to the method given in [7].  

The two-dimensional validation simulations were performed with periodic gold slits, for which the 
dispersion of permittivity was described with the critical points model. The verified transmis-
sion/reflection spectra show good agreement with the spatial harmonic method. Then the method was ap-
plied to three-dimensional simulations of random films, where the economy on flops with a better realiza-
tion of dispersion is the most important for the overall performance of the FDTD method. 
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