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Abstract: This work deals with the use of our recent gemazdldispersive material (GDM) model built
on Pade approximants that is applied to FDTD sitrarla of nanoplasmonic structures. In particular, o
original formulation is compared to the classi@dursive-convolution technique for the Lorentz beci

tor using a complex recursive accumulator. The psed GDM model is then used to simulate the spec-
tral response of an array of 2D gold nanoslits, dredresults are successfully validated with fremye
domain solutions. Another simulation example shtvestransmission, reflection, and absorption spectr
obtained from 3D FDTD parallel calculations of althlayer semicontinuous metal film. The numerical-
ly simulated results are then compared to datairsdddarom the optical characterization of a semicon
nuous film sample with the same topology, and apaomeon of both results demonstrates a good fit.
Each example uses a modulated incident pulse wiked carrier frequency and a Gaussian envelope.
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Critical Points (CP).

1. Introduction

While frequency-domain simulations of nanophotastitictures composed of dispersive media may
be adequate for most cases, certain physical phemomran only be represented in the time domain. Si-
mulations containing nonlinear effects strongenthanild perturbation (up to and including saturayj
as well as photomodification and other irreversgilenomena, require a time-domain descriptiontdn f
guency-domain (FD) numerical methods, the datalifgpersive material properties is taken as a discre
set of experimental entries; however, the implertgmm of the dispersion in time-domain methods re-
quires an approximation of FD dispersion data wathanalytical function. The most popular approach,
well covered in the FDTD literature, e.g. [1], tstake this analytical dependency as a combinaifon
Debye, Drude, Sellmeier, and Lorentz terms, whibvides a good fit with the FD data for metal and
dielectric media [2]. A more recent and more effecED approximation (better fit and less compuatadti
al cost) is obtained for a number of noble metath the so called critical points (CP) analyticamer-
sion model [3,4]. However, the dispersive FDTD noeltis not fully investigated for that latter modsb
far only a few papers have reported successful noalesimulations using an FDTD method in combina-



tion with auxiliary differential equation (ADE) dirst-order recursive convolution (RC) techniques t
implement a CP dispersion model [5,6]. This neesdrhativated work to implement higher-order RC me-
thods, and it has generally resulted in a neceksitg universal approach to the implementatiodifiér-

ent dispersion terms and different ADE and RC mashd he latter was accomplished in [7], where the
dispersion is introduced with Pade approximantsthedoroposed, explicit scheme is resolved in d-min
mized number of flops while, also, having the #@pilo easily switch between different ADE and RG-me
thods of first- and second-order accuracies.

In Section 2, we recapitulate the approach propasgd]; although we show that for RC methods
the initial formulation [7] can be simplified with the introdien of complex recursive accumulators,
provided that the aim is to obtain the simplesirfigias for the higher-order RC methods. The drawdack
of using complex recursive accumulators for spedfspersion models are discussed. The discussion i
important since all the classical publications lné RC methods for Lorentz media [1], [8-12] utilize
complex accumulators and can be improved by usiaffunctions as has been done in [7]. In Sectjon 3
we show the results of 2D and 3D simulations penéat with the proposed dispersive FDTD.

2. Dispersive FDTD

In this section, we discuss the implementationhef dispersion of permittivity for time-domain me-
thods. We revise the techniques that give the m@séral approaches to incorporate a wide classsof d
persion models while exploiting different ADE an@ Rumerical schemes.

A. Dispersive FDTD Revised

For simulations, we use the conventional FDTD methg Yee; however, the dispersion is intro-
duced using the generalized dispersive materialMEBodel based on Pade approximants [7]. In this
approach, the dispersive permittivity function ss@amed to be given in the frequency domain in e f
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which includes the most important metal and dieledispersion models such as Drude-Lorentz, Debye,
Sellmeier, and critical points. We will also netdltransform to time domain, which is

E(t) =e 0(t)+ aeo_lU(t) + Zaie_ () + Zaie_ rit sin(6;t — ,)U(t), 2

i€l icl,

here, a; = ag;+7; =by; Vi€l Ora, = 67:71\/0(21,7: — ay,00,0; + b(),ia12,7', P = Arg[ao,z - au(%‘, + tRed))],

v = Lb,, 6, = \b, =7 Viel,, 6t is Dirac delta function, and(t) is Heaviside step function.
And the time-domain partial polarizations correggiog to termy, , and denoted aB, , satisfy the ODEs

P, +0,P, = ayE, P,(0)=0 Vi€l

. . o , 3
P +b P +0,P =ayE+a B P0)=P0)=0 Viel, @)

where the components of the electric polarizatiecter P are normalized along with andH fields by
the incident field factor®, , E,, H,, with D, = ¢,E,, H, = w/EoualEO. The polarizations can be writ-
ten through the convolution integrl = 1, U 1,)
t
P(t) = f X(TE(t — 7)dr Vi€, (4)
0
Numerically, local polarization can be calculateihg a finite-difference approximation of the ODEs

(3) (ADE method) or by using the numerical integratadra convolution integrgd) (RC methods). As it
is shown in [7], both numerical methods resultéaurrences of the form
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Pq‘Hl = 6P + ﬂo.q‘Pq‘nil + o, BT 4 o EY + ao,yzE%l Viel,. (6)

For ADE methods, the coefficients, ,, 5, ; are found immediately after the finite-differenqgpeoxima-

tion of (3) and grouping terms. For RC methods, the derivaifahe coefficients requires more algebraic
effort. In [7], we give general formulas for coeféntsa, ;, 5, ;, which are parameterized through the first

two approximation coefficients of the numericaleigitation sum and apply to the formulas for five RC
methods: TRC[8], PCRC2 [9], PLRC [10], RRC [11]daPCRC [12]. However, this algebraic effort can

be simplified even more by using a complex expdaestisceptibility fori ¢ 1, terms (compare t(?))
)?,;(t) - _Laje(*W’L+z,§L)t7L%U(t) Viel,, )

so that the actual polarizationPi$t) = Re|[P,(t)| , whereP,(w) = E(w),(w) . The simplification is an ob-

ligatory trick in all basic publications of RC metls applied to the Lorentz dispersion model; howeave
has some drawbacks. In the next subsections, thergleed approach [7] is formulated with complex
susceptibility and the pros and cons of both radl@mplex RC realizations are discussed.

B. Using Complex Exponential Susceptibility for RC Methods
The starting point of this approach is the validifythe equatiORe[xi(t)} = x;(t), i € 1,, since this
holds only if §, = \/5,, — 15}, € R, i € I,. The latter is equivalent to the condition thathi& Drude or

the over-damped Lorentz terms are present in thre(&), they must be expanded to irreducible terms,
that is to a conductivity term and Debye terms 7,. Then, all partial susceptibilitieg;(t), : € 7, and
Y,(t), i € I, have the exponential representatien'U(¢), and the original lemma from [7] gives a re-
cursive formula for all partial polarizatiors(t) , i € I, andP,(t) , i € I,.

Lemma. If an RC approximation method for the exponergigceptibility y(t) = aeU(t) is given with
the sumP” = Z;:;XJ.E"*J' and the approximation coefficients satisfy theureence x; = eﬁTXH,

j > 2, then the recursive rule for polarization can liten as

Prtl — Opn + XOEnJrl + [Xl _ Xoeﬁr E". (8)

Table 1: RC Coefficients for exponential pal€¢) = ac’'U(t)

2 Order RC Methods ;, = ey, |,k > 2 1* Order RC Methods x, = ey, _;,k > 1

TRC [g] PCRC2 [9] PLRC [10] RRC [11] PCRC [12]
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In particular, this lemma gives a recursive intéigraformula for methods such as RRC, TRC, PLRC,
PCRC, and PCRC2; the coefficients, y, for all listed methods are given in Table 1.

Finally, we incorporate the permittivity functioh)(into Yee's FDTD scheme through polarizations:

£ (En+1 _ En) 4 ;_T(En+1 4 En) 4 Z (Ptjn,+1 _ Pin) + Re Z (i)inJrl _ Pln) — CT(V X H)n+1/2 . (9)
€0 i€l icl,

Formulas (8)-(9) are additionally rearranged toimirne the number of performed flops:
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| , (10)
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One can easily reproduce the formulas (10)-(11igimty U} = P"*' — P — x E"*' + (x,, — x,)E".
Using (11), with coefficients,, x, from Table 1 and the exponential representatiorsfisceptibili-

ties (2)-(7), the dispersion implementation of mB& methods becomes straightforward, including im-
plementation of the Debye, Drude, Lorentz andaaitpoints models.

C. Disadvantages of the Approach with Complex Exponential Susceptibility
The obvious advantage of using the complex recei@bcumulators is the relative ease of the numer-
ical formulas. However, for that advantage we pi the following drawbacks:
a) The update of each complex recursive accumulatdore in 10 flops; however, by converting the
complex-valued formulas into real functions, thmegrocedure can be performed in 7 flops (see [7]);
b) The complex recursive formula is not suitable toe tinalysis of numerical aspects of the method,
such as stability and dispersion; in that case exsion to real functions is required;
¢) The over-damped Lorentz and Drude terms must benglqul to Debye and conductivity terms.

3. Numerical smulations

To verify our method, we investigated the opticedperties of gold and silver nanostructures. The
dispersive function of gold is more precisely defiras a sum of a Drude term and two critical points
terms (D2CP). For silver, which is examined in #evelength band above the interband transitions, we
may use the Drude model. The detailed functionspamdmeters for these models are described in [13].
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Fig. 1. 2-D simulation model with goid nano-slits.

A. 2-D Smulation with Gold Nano-Sits

First, we examine a 2-D simulation with periodiddyoano-slits under normal incidence of TE- or
TM-polarized waves, as shown in Fig. 1. The goiis sire surrounded by air and extend to infinityha
x direction. All of the 150-nm slits are made i®@0-nm silver film with a 450-nm period; the sliee
filled with a dielectric material (refractive index = 1.5). The rectangular simulation domain is set to be
10 um in the z direction, with perfectly matched lagyeML) truncation at the two sides that are perpen-
dicular to this direction, and 450 nm in the y dtien with periodic boundary conditions (PBC) apdli
to the remaining sides to mimic a periodic arrayndifitely extended slits. The spatial step isrb (the
Courant condition number is 0.5). To obtain thealditzand response, we take the incident E-field ta be
Gaussian pulse (300-nm carrier, 237~408-nm FWHN§ 8ffset). The field probes, which are located
close to the source and the shade sides alongotigitudinal (propagation) direction, are then post-
processed with FFT to obtain the numerical reftecnd transmission spectra. The results are caupar



to a semi-analytical tool based on the spatial baimanalysis (SHA) method and freely available on-
line [14]. As shown in Fig. 2, the reflection amdrtsmission spectra for both TE and TM polarization
are in excellent agreement; the absolute numeeicals are within the range of 0.01 across the &hol
wavelength range from 500 to 1600 nm.
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Fig. 2. Comparison of transmission-reflection speof 2-D gold slits, (a) TE polarization and
(b) its absolute error, (c) TM polarization and ifd)absolute error.

B. 3-D Smulations with Multi-Layer Composite Ag/SO, Film

Our other important example deals with the spectrgponses of a multi-layer, composite Ag/SiO
film on a glass substrate: (= 1.52). As illustrated in Fig. 3(a), the input model the composite film is
generated by converting the FE-SEM image of a ¢abed film (Figure 3(b)) to a binary image, whene a
appropriate grayscale threshold is used to deterthi@ locations occupied by silver and S{@ = 1.45).
It is impossible to model the entire area of th;fitherefore, the complete film image is dividetbi in-
dividual frames (200x200 rineach). The spatial step is 2 nm (the Courant tiondhumber is 0.5). The
PML-truncated simulation domain isdn long. PBCs are applied to all sides parallehtoz direction.
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Fig. 3. FDTD simulation of a multi-layer compos#g/SiO, film deposited on a thick glass substrate.

The calculated spectra change widely from framfame due to differences in geometry; hence, to
obtain statistically sound average spectra of lhg fve calculated a representative number of iicldial
spectra [15,16]. Fig. 3(c) depicts the averagelgetbn (R), transmission (T) and absorption (A¢cpa,
which are in good agreement with the experimerd#d dassuming a stochastic topology of the filng an
simplifications introduced by averaging the speofrperiodically arranged finite-sized frames).

4, Conclusions

We apply the generalized dispersive material mpdelbased on the Pade approximants of the dis-
persive dielectric function for two-dimensional atidee-dimensional simulations of nanoplasmonic
structures. This method is used due to its alititwork uniformly with different dispersion termsch as
Drude, Lorentz, Debye, critical points, and Sellengand to easily switch between ADE and RC me-
thods, while having the same or better effectivégomance.



The approach used was compared to the classicatda@nent of conjugate poles with complex ac-
cumulators. We showed that although using complexctfons simplifies the derivation of the scheme
coefficients for RC methods, it has a number ofuthi@cks with respect to the method given in [7].

The two-dimensional validation simulations werefpaned with periodic gold slits, for which the
dispersion of permittivity was described with theitical points model. The verified transmis-
sion/reflection spectra show good agreement wighsiatial harmonic method. Then the method was ap-
plied to three-dimensional simulations of randoim$i, where the economy on flops with a better rzeali
tion of dispersion is the most important for thell performance of the FDTD method.
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